Design of Reconfiguring Control Systems via State Feedback Eigenstructure Assignment

Guo-Sheng Wang¹, Qiang Lv¹, Bing Liang², and Guang-Ren Duan²

¹ Department of Control Engineering, Academy of Armored Force Engineering, Beijing, 100072, P. R. China
gswang@126.com; ² Center for Control Theory and Guidance Technology, Harbin Institute of Technology, Harbin, 150001, P. R. China
Liangbing@hit.edu.cn, Grduan@ieee.org

Abstract

In this paper the design of reconfiguring a class of linear control systems via state feedback eigenstructure assignment is investigated. The design aim is to resynthesize a state feedback control law such that the eigenvalues of the reconfigured closed-loop control system can completely recover those of the original closed-loop system, and make the corresponding eigenvectors of the former as close to those of the latter as possible. General complete parametric expressions for the state feedback gains are established in terms of a set of parametric vectors and the closed-loop poles. The set of parametric vectors and the set of closed-loop poles represent the degrees of freedom existing in the reconfiguring design, and can be further properly chosen to meet some desired specification requirement, such as robustness. An illustrative example and the simulation results show that the proposed parametric method is effective and simple.

Keyword: Linear control systems, eigenstructure assignment, state feedback, reconfiguration.

1 Introduction

Reconfigured Control Systems (RCS) possess the ability of accommodating system failures automatically with some prior assumptions. In recent years, RCS has drawn much attention of many researchers, and many new methods and schemes have been proposed (see, e.g. [1]-[7] and their references). In addition to linear quadratic regulator method [1], pseudo inverse method [2], inverse component-mode synthesis method [3], Lyapunov method [4] and LMI method [5], eigenstructure assignment method ([6] and [7]) becomes more and more attractive. Based on the fact that the performances of a control system are mainly determined by their eigenvalues and the corresponding eigenvectors, thus eigenstructure assignment method is convenient to redesign a new gain matrix in order to recover the eigenvalues of the normal control system and make their corresponding eigenvectors of the reconfigured closed-loop...
Guo-Sheng Wang, Qiang Lv, Bing Liang, and Guang-Ren Duan
Design of Reconfiguring Control Systems via State Feedback Eigenstructure Assignment

systems as close to those of the normal closed-loop system as possible. Parametric methods for eigenstructure assignment have been intensively studied in [8]-[19] for conventional linear systems, descriptor linear systems and second-order dynamic systems. The parametric methods give the parametric expressions of all the control laws and all the closed-loop eigenvector matrices. These free parametric vectors included in these expressions and the closed-loop eigenvalues, offer all the degrees of design freedom and can be further utilized to satisfy certain specifications in some control system designs.

In this paper, we will consider the design of reconfiguring linear systems via state feedback eigenstructure assignment. Based on the result for state feedback eigenstructure assignment proposed by Duan in [8], a parametric form of all the resynthesized gain matrices is derived and a corresponding algorithm for this reconfiguration is proposed. This parametric method offers all the degrees of design freedom, which can be utilized to satisfying additional performances in control system designs.

2 Problem Formulation

Consider a linear control system in the form of

$$\dot{x} = Ax + Bu,$$ \hspace{1cm} (1)

where $x \in \mathbb{R}^n$ and $u \in \mathbb{R}^r$ are the state and input vectors, respectively; A and B are known matrices with appropriate dimensions and $\text{rank}B = r$; the matrix pair (A, B) is controllable, that is,

$$\text{rank}[A - sI_n, B] = n, \forall s \in \mathbb{C}.$$ \hspace{1cm} (2)

Because of the outstanding variations, the system (1) often becomes into the following form

$$\dot{x}_f = A_f x_f + B_f u_f,$$ \hspace{1cm} (3)

where $x_f \in \mathbb{R}^n$ and $u_f \in \mathbb{R}^m$ are the state and input vectors, respectively; A_f and B_f are known matrices with appropriate dimensions and $\text{rank}B_f = m$; the matrix pair (A_f, B_f) is controllable, that is,

$$\text{rank}[A_f - sI_n, B_f] = n, \forall s \in \mathbb{C}.$$ \hspace{1cm} (4)

For convenience, we call system (1) the normal linear system and system (3) the fault linear system. Applying the following state feedback control law

$$u = Kx, \quad K \in \mathbb{R}^{r \times n},$$ \hspace{1cm} (5)

to the system (1), yields its closed-loop system as

$$\dot{x} = A_c x, \quad A_c = A + BK.$$ \hspace{1cm} (6)

Recall the fact that non-defective matrices possess eigenvalues which are less insensitive with respect to parameter perturbations, in this paper, we only consider the eigenvalues of the closed-loop system (6) are distinct and self-conjugate. Denoting the eigenvalues of system (6) by $\sigma(A_c) = \{s_i \in \mathbb{C}, i = 1, 2, \cdots, n\}$, where s_i,
are distinct and self-conjugate and their corresponding eigenvectors by
\[v_i \in \mathbb{C}^n, \quad i = 1, 2, \ldots, n. \]

Applying the following state feedback controller
\[u_f = K_f x_f, \quad K_f \in \mathbb{R}^{n \times n}, \]
to the fault system (3), obtains
\[\dot{x}_f = A_f x_f, \quad A_f = A_c + B_f K_f. \]

Due to the fact that the internal behaviors of a control system are determined by its eigenvalues together with their corresponding eigenvectors, and the performances of its closed-loop system can be improved by modifying the eigenvalues and the corresponding eigenvectors with some feedback control laws, then the problem of reconfiguring the linear system (1) via state feedback to be solved in this paper can be stated as follows.

Problem RESA: Given the controllable normal system (1), its controllable fault system (3), and a set of self-conjugate distinct complex numbers \(s_i \), \(i = 1, 2, \ldots, n \), then redesign a new state feedback controller (8) such that
\[\sigma(A_c) = \sigma(A_{c_f}) = \{s_i \in \mathbb{C}, i = 1, 2, \ldots, n\}, \] and
\[J_f = \|v_i - \bar{v}_i\|^2, \quad i = 1, 2, \ldots, n, \]
are minimized, where \(v_i, \bar{v}_i \in \mathbb{C}^n, \quad i = 1, 2, \ldots, n \), are the eigenvectors of the closed-loop matrices \(A_{c_f} \) and \(A_c \) associated with \(s_i \), \(i = 1, 2, \ldots, n \).

Remark 1. From the description of Problem RESA, it is clear to see that when the relation (10) is satisfied, there hold
\[A_{c_f} v_i = s_i v_i, \quad i = 1, 2, \ldots, n. \]

3 Closed-Loop Eigenstructure Assignment

Set
\[\Lambda = \text{diag}(s_1, s_2, \ldots, s_n), \quad V = [v_1 \ v_2 \ \cdots \ v_n]. \]

Equation (7) is clearly reduced into the following form:
\[AV + BKV = VA. \]

Further, denote
\[W = KV. \]
then equation (13) is changed into its equivalent form:
\[AV + BW = VA. \]

Because the matrix pair \((A, B)\) is controllable, applying a series of element matrix transformations to matrix \([A - sI \ B]\), we can obtain a pair of unimodular matrices \(P(s) \in \mathbb{R}^{n \times n}[s]\) and \(Q(s) \in \mathbb{R}^{(n+r) \times (n+r)}[s]\) satisfying the following equation:
Guo-Sheng Wang, Qiang Lv, Bing Liang, and Guang-Ren Duan
Design of Reconfiguring Control Systems via State Feedback Eigenstructure Assignment

\[P(s) \begin{bmatrix} A - sI & B \end{bmatrix} Q(s) = \begin{bmatrix} 0 & 1 \end{bmatrix}, \forall s \in \mathbb{C}. \]
(16)

Partition \(Q(s) \) into the following form

\[Q(s) = \begin{bmatrix} Q_{11}(s) & Q_{12}(s) \\ Q_{21}(s) & Q_{22}(s) \end{bmatrix}, \quad Q_{11}(s) \in \mathbb{R}^{n \times r}[s], \]
(17)

then we can obtain the following lemma which gives the parametric expressions of eigenstructure assignment via state feedback in time-invariant linear systems.

Lemma 1 [8] Given matrices \(A \) and \(B \) with \(\text{rank}(B) = r \), and a group of self-conjugate distinct complex numbers \(s_i, i = 1, 2, \ldots, n \), if the matrix pair \((A, B) \) is controllable, then the parametric expressions of all the state feedback gain matrix \(K \) in (13) can be given by

\[K = W V^{-1}, \]
(18)

where

\[V = [v_1 \ v_2 \ \cdots \ v_n], \quad v_i = Q_{11}(s_i) f_i, \quad i = 1, 2, \ldots, n, \]
(19)

and

\[W = [w_1 \ w_2 \ \cdots \ w_n], \quad w_i = Q_{21}(s_i) f_i, \quad i = 1, 2, \ldots, n. \]
(20)

and \(f_i \in \mathbb{C}^r, \quad i = 1, 2, \ldots, n \), are a group of free parametric vectors and satisfy the following constraints:

- **Constraint 1:** \(s_i = \bar{s}_j \Leftrightarrow f_i = f_j, \quad i, j = 1, 2, \ldots, n; \)
- **Constraint 2:** \(\det(V) \neq 0. \)

4 Solution to Problem RESA

Due to the controllability of the matrix pair \((A_f, B_f) \), we can now set that the eigenvalues of the matrix \(A \) can be assigned arbitrarily via state feedback. Thus the eigenvalues \(s_i, \quad i = 1, 2, \ldots, n \), of the matrix \(A \) can be assigned to those \(A_f \) via state feedback. Then the relation (10) in Problem RESA is satisfied and the main task left for the solution to Problem RESA is to design a state feedback such that (11) holds.

Clearly, denote

\[V_f = [v_{f1} \ v_{f2} \ \cdots \ v_{fm}], \]
(21)

then equations in (12) can be written into the following compact form

\[V_f \Lambda = A_f V_f + B_f K_f V_f. \]
(22)

Further, denote

\[W_f = K_f V_f, \]
(23)

then equation (22) is changed into the following form

\[V_f \Lambda = A_f V_f + B_f W_f. \]
(24)

Due to the controllability of the matrix pair \((A_f, B_f) \), applying a series of element matrix transformations to matrix \([A_f - sI \ B_f] \), we can obtain a pair of unimodular
matrices \(P_f(s) \in R^{n \times n}[s] \) and \(Q_f(s) \in R^{(n+m) \times (n+m)}[s] \) satisfying the following equation:

\[
P_f(s)[A_f - sI - B_f]Q_f(s) = [0 \ I], \quad \forall s \in C.
\] \hspace{1cm} (25)

Partition \(Q_f(s) \) into the following form

\[
Q_f(s) = \begin{bmatrix} Q_{11}^f(s) & Q_{12}^f(s) \\ Q_{21}^f(s) & Q_{22}^f(s) \end{bmatrix}, \quad Q_{11}^f(s) \in R^{n \times n}[s].
\] \hspace{1cm} (26)

By utilizing the same method in Lemma 1, we can obtain the following theorem, which gives solutions to equations (23) and (24).

Theorem 1. Given matrices \(A_f \) and \(B_f \) with \(\text{rank}(B_f) = m \), and a group of self-conjugate distinct complex numbers \(s_i, \ i = 1, 2, \cdots, n \), if the matrix pair \((A_f, \ B_f) \) is controllable, then the parametric expressions of all the state feedback gain matrix \(K_f \) in (23) can be given by

\[
K_f = W_f V_f^{-1},
\] \hspace{1cm} (27)

where

\[
V_f = [v_{f1} \ v_{f2} \ \cdots \ v_{fn}], \quad v_{fi} = Q_{11}^f(s_i)g_i, \ i = 1, 2, \cdots, n,
\] \hspace{1cm} (28)

and

\[
W_f = [w_{f1} \ w_{f2} \ \cdots \ w_{fn}], \quad w_{fi} = Q_{21}^f(s_i)g_i, \ i = 1, 2, \cdots, n,
\] \hspace{1cm} (29)

and \(g_i \in C^m, i = 1, 2, \cdots, n \), are a group of free parametric vectors and satisfy the following constraints:

Constraint 3: \(s_i = \overline{s_j} \iff g_i = \overline{g_j}, \ i, j = 1, 2, \cdots, n \);

Constraint 4: \(\det(V_f) \neq 0 \).

Substituting (19) and (28) into (11), obtains

\[
J_i = \left\| Q_{11}^f(s_i) f_{ij} - Q_{11}^f(s_i) g_i \right\|^2, \ i = 1, 2, \cdots, n.
\] \hspace{1cm} (30)

By using orthogonal projection, we can obtain

\[
g_i = \left[Q_{11}^f(s_i)^\dagger Q_{11}^f(s_i) \right]^{-1} Q_{11}^f(s_i)^\dagger Q_{11}^f(s_i) f_{ij}, \ i = 1, 2, \cdots, n,
\] \hspace{1cm} (31)

which minimize the indexes in (11). Further, let

\[
\Sigma_i = \left[Q_{11}^f(s_i)^\dagger Q_{11}^f(s_i) \right]^{-1} Q_{11}^f(s_i)^\dagger Q_{11}^f(s_i), \ i = 1, 2, \cdots, n,
\] \hspace{1cm} (32)

then (31) is changed into

\[
g_i = \Sigma_i f_{ij}, \ i = 1, 2, \cdots, n.
\] \hspace{1cm} (33)

Substituting (33) into (28) and (29), yields

\[
v_{fi} = Q_{11}^f(s_i) \Sigma_i f_{ij}, \ i = 1, 2, \cdots, n,
\] \hspace{1cm} (34)

and

\[
w_{fi} = Q_{21}^f(s_i) \Sigma_i f_{ij}, \ i = 1, 2, \cdots, n.
\] \hspace{1cm} (35)
Guo-Sheng Wang, Qiang Lv, Bing Liang, and Guang-Ren Duan
Design of Reconfiguring Control Systems via State Feedback Eigenstructure Assignment

Thus, the redesigned state feedback gain can be given by

\[K_f = W_f V_f^{-1}, \]

(36)

where

\[V_f = [v_{f1} \quad v_{f2} \quad \cdots \quad v_{fn}], \quad v_{ji} = Q_{i1}(s_j) \Sigma_j f_i, \]

(37)

and

\[W_f = [w_{f1} \quad w_{f2} \quad \cdots \quad w_{fn}], \quad w_{ji} = Q_{i1}(s_j) \Sigma_j f_i. \]

(38)

In order to guarantee the realness of the gain matrix \(K_f \) in (36), the following constraint must hold:

Constraint C1: \(s_i = \overline{s_j} \Leftrightarrow \Sigma_i = \overline{\Sigma_j}, \quad f_i = \overline{f_j}, \quad i, j = 1, 2, \cdots, n; \)

Moreover, Constraints 2 and 4 must hold, and are clearly equivalent with the following two constraints, respectively,

Constraint C2: \(\det(Q_{i1}(s_1)f_1 \quad Q_{i1}(s_2)f_2 \quad \cdots \quad Q_{i1}(s_n)f_n) \neq 0; \)

Constraint C3: \(\det(Q_{i1}(s_1)\Sigma_1 f_1 \quad Q_{i1}(s_2)\Sigma_2 f_2 \quad \cdots \quad Q_{i1}(s_n)\Sigma_n f_n) \neq 0. \)

From the above reductions, we can give the following theorem, which gives the solution to Problem RESA.

Theorem 2. Given the controllable normal system (1) and the controllable fault system (3), and a group of distinct and self-conjugate scalars \(s_i, i = 1, 2, \cdots, n \). Then all the desired solutions \(K_f \) in Problem RESA can be given by (36) with the parametric vectors \(f_i \in C^r, \quad i = 1, 2, \cdots, n \), satisfying Constraints C1-C3.

According to Theorem 2 and the above deductions, the following algorithm for Problem RESA can be proposed as follows.

Algorithm RESA:
1. Calculate a pair of unimodular matrices \(P(s) \) and \(Q(s) \) satisfying (16), and partition \(Q(s) \) as in (17);
2. Calculate a pair of unimodular matrices \(P_f(s) \) and \(Q_f(s) \) satisfying (25), and partition \(Q_f(s) \) as in (26);
3. Find a group of parameters \(f_i \in C^r, \quad i = 1, 2, \cdots, n \), satisfying Constraints C1-C3, and calculate the matrices \(W_f \) and \(V_f \) according to (38) and (37), respectively;
4. Calculate the state feedback gain matrix \(K_f \) according to (36).

5 **An Illustrative Example**

Consider a normal linear system and its corresponding fault linear system with the following parameters:

66
Easily, we can find that the matrix pair \((A, B)\) and \((A_f, B_f)\) are both controllable.

In this example, we choose the eigenvalues of the normal closed-loop system as
\[s_1 = s_3 = -2 \pm 3i, \quad s_3 = -4 \, . \]
Algorithm RESA is utilized to solve this reconfiguration problem. The results of each step are given as follows.

1) Obtain the following matrices satisfying (16) as

\[
P(s) = I, \quad Q(s) = \begin{bmatrix}
1 & 0 & 1 & -1 & 0 \\
s & 0 & 1 + s & -s & 0 \\
1 & 1 & 0 & 1 & 1 \\
s -1 & s -1 & 0 & s -1 & s \\
s^2 -1 & -1 & s(s +1) & -s^2 & -1
\end{bmatrix}.
\]

2) Obtain the following matrices satisfying (25) as

\[
P_f(s) = I, \quad Q_f(s) = \begin{bmatrix}
1 & 0 & 0 & 0 \\
s & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
s^2 -1 & s & 0 & 1 \\
0 & 1 + s & 0 & 0 & 1
\end{bmatrix}.
\]

3) Denoting \(f_i = \begin{bmatrix} a_i \\ b_i \end{bmatrix}, \ i = 1, 2, 3, 4 \). Then from (37) and (38), we can get the parametric expressions of \(V_f\) and \(W_f\). Thus we can get the parametric expression of the redesigned state feedback gain matrix \(K_f\) from (36).

Specially, choosing a group of the parametric vectors as
\[
f_1 = f_2 = \begin{bmatrix} 3 - 2i \\ -4 + 7i \end{bmatrix}, \quad f_3 = \begin{bmatrix} -2 \\ 5 \end{bmatrix}.
\]

then we can calculate that
\[
V_f = \begin{bmatrix}
3 - 2i & 3 + 2i & -2 \\
13i & -13i & 8 \\
-4 + 7i & -4 - 7i & 5
\end{bmatrix}, \quad W_f = \begin{bmatrix}
-35 - 33i & -35 + 33i & -37 \\
-17 - 19i & -17 + 19i & -15
\end{bmatrix},
\]

and

\[
K_f = \begin{bmatrix}
91 & -30 & 77 \\
25 & -10 & 23
\end{bmatrix}.
\]

Moreover, from (18) we obtain
\[
K = \begin{bmatrix}
3 & -9 & 21 \\
13 & -30 & 77
\end{bmatrix}.
\]
For convenience, we call the closed-loop systems of the normal system under K as system 1, the closed-loop system of the fault system under K_f as system 2 and the closed-loop system of the fault system under fK as system 3, respectively. The errors between the outputs of system 1 and system 2 are given in Fig. 1 and Fig. 2, respectively and the simulation results show that the redesigned feedback K_f is effective. Moreover, the eigenvalues of system 3 are 67.4133, $-0.2066 + 0.9042i$, and $-0.2066 - 0.9042i$, in which 67.4133 is an unstable eigenvalue, while the eigenvalues of system 1 are the same with those of system 2.

Fig. 1. Errors between the first outputs of system 1 and system 2

Fig. 2. Errors between the second outputs of system 1 and system 2

6 Conclusions

In this paper reconfiguring linear control systems via state feedback eigenstructure assignment is investigated. By utilizing the freedom degrees offered by a parametric
result of eigenstructure assignment in linear control systems, a parametric expression for all the state feedback gain matrices, which can recover the eigenvalues of the normal closed-loop system and make the eigenvectors of the fault closed-loop system as close to those of the normal closed-loop system as possible, is established and an algorithm for this design is proposed. The parametric method offers all the design degrees of freedom, which can be further utilized to satisfy certain specifications in control system designs, such as robustness etc. An illustrative example and the simulation figures show the effect of the proposed algorithm.

References

Design of Reconfiguring Control Systems via State Feedback Eigenstructure Assignment

Guo-Sheng Wang received both the B. S. and M. S. degrees in 1999 and 2001, respectively, and the Ph. D. degree in Control Theory and Control Engineering from Harbin Institute of Technology in 2004. He is currently a lecture of Department of Control Engineering at Academy of Armored Force Engineering. His research interests include robust control, eigenstructure assignment, and second-order linear systems.

Qiang Lv received the B. S. degree, the M. S and Ph. D. degrees in Control Systems Theory from Harbin Institute of Technology. He is currently a professor of Department of Control Engineering at Academy of Armored Force Engineering. His main research interests include robust control, armored force control and neural network control.

Bing Liang received both the B. S. and M. S. degrees in Mathematics from Hebei University in 1999 and 2002, respectively. She is currently working toward PhD degree in Control Systems Theory of Harbin Institute of Technology. Her research interests include descriptor systems, fault-tolerant control and robust control.

Guang-Ren Duan received the B. S. degree in Applied Mathematics, and both the M. S and Ph. D. degrees in Control Systems Theory from Harbin Institute of Technology. He is currently the director of the Center for Control Systems Theory and Guidance Technology at Harbin Institute of Technology. His main research interests include robust control, eigenstructure assignment, descriptor systems, missile autopilot control and magnetic bearing control.